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Abstract

This paper investigates factors causing different lifestyle choices and their long-run im-

plications in a rational economic agent framework. To accomplish this, we establish a dy-

namic model of consumption, labor-leisure allocation, and risky investment decisions for

an agent with recursive preference. We first characterize four different lifestyles including

YOLO (You Only Live Once) based on the agent’s consumption and labor-leisure patterns,

and then explore the long-term sustainability of these lifestyles. We discover that lifestyle

choices are time-varying and can dramatically change according to the agent’s financial sta-

tus. These findings provide profound policy implications.
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1 Introduction

With the rise of the YOLO (You Only Live Once!) mindset since the 2010s, an increas-

ing trend, particularly among the young, is placing a higher emphasis on embracing leisure

in the early stages of life. In contrast, over the last two decades, there has been a signifi-

cant surge in the proportion of individuals engaging in multiple job commitments.1 Indeed

more flexibility in working hour choices enables people to pursuit diverse lifestyles. This

trend has been significantly facilitated by the emergence of online platforms, exemplified

by companies like Uber and Lyft (Campbell (2018) and Hall and Krueger (2018)). There is

significant heterogeneity in work schedules among the working populations and notably, the

heterogeneity is not caused by the difference in productivity, job characteristics, or wages,

but by workers’ preference (Lachowska et al., 2023).

Given the increasing flexibility in working hours for individuals, many mass media out-

lets have raised serious concerns about lifestyles of the young generations.2 Critiques often

point out that they tend to travel extensively, work few hours, prioritize consumerism, and

show little concern for the potential long-term consequences of their lifestyles. In fact, when

viewed collectively, these lifestyles can pose significant challenges on the social security,

insurance, and health care systems when the current young reaches old age. This is because

these choices often do not lead to sufficient savings for their later years. It is also notable

according to the 2018 report from the National Institute on Retirement Security that 66%

of U.S. working millennials have no employer-provided savings retirement (Brown, 2018).

These trends raise important questions about the financial well-being of current young (and

future old) generations and the sustainability of support systems in the long-run.

Why do some people work more or less?3 Specifically, what preference factors lead to

life patterns such as YOLO or non-YOLO? Is YOLO sustainable? That is, can an individual

who takes a YOLO lifestyle when young still keep the same pattern in later life? Most

1According to data from the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD), the
percentage of employed individuals holding more than one job has risen to 7.2% during the period spanning from
the second quarter of 1996 to the first quarter of 2018.

2For example, see the Forbes article: ”The YOLO Mistake Many Millennials Are Making” https://
tinyurl.com/msap2tpu.

3We do not consider the case of involuntary layoffs in our model. If we introduce the layoff shock such as
a Poisson process, it will lead to an increase in the subjective discounting factor, which does not fundamentally
change the main result of the model.
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importantly, what is the reason that YOLO is particularly popular among millenials and Gen

Z, while it was not prevalent when the older generations (Baby Boomers and Gen X) were

young? Are there any long-term policy implications to mitigate concerns about the new

lifestyles of the younger generation? This paper aims to address these questions within a

rational agent framework.

To achieve this goal, we set up a dynamic optimal consumption, labor-leisure choice, and

risky portfolio decision problem of an economic agent with recursive (Epstein-Zin) utility.

It is worth highlighting two pivotal elements in our modeling approach that differentiate

it from conventional consumption-investment models: (i) flexible labor-leisure choice and

(ii) recursive utility. Our model is the first one to have both (i) and (ii) with closed form

solutions in a continuous-time setup while there have been studies that have only either one

or the other. The first component is a prerequisite for modeling the heterogeneity or diversity

of working hour choices. The second component, i.e., the Epstein-Zin utility setup,4 is also

important because the model implications under the recursive utility setup are fairly different

from those under the time-separable utility setup.

low EIS high EIS
high ρ (impatient) YOLO (Type Y ) extreme YOLO (Type Ye)

low ρ (patient) Non-YOLO (Type N ) extreme Non-YOLO (Type Ne)

Table 1: Types of agents according to the agent’s EIS (ψ) and subject discounting (ρ). See
Section 4 for more details. See Figure 10 for a graphical representation in a (ψ, ρ)−plain.

As presented in Table 1, we classify economic agents into four distinct types based on

the relative levels of the two preference factors: EIS and subjective discounting. First, the

extent of (im)patience can serve as a distinguishing factor between YOLO and non-YOLO

behaviors as high discounting is indicative of increased tendencies towards both current con-

sumption and leisure. Second and more important, the impact of EIS is opposite for the

two cases with high and low discounting in the characterization in Table 1, which is a novel

finding in the literature regarding the role of EIS. When the agent is patient (or the financial

market is attractive), the substitution effect becomes stronger than the income effect as EIS

increases. That is, as EIS increases, the agent is more willing to substitute current leisure and

4See Epstein and Zin (1989); Weil (1990), and Duffie and Epstein (1992a,b).
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consumption with leisure and consumption in the future. Thus, the current working hours

increase with EIS. However, when the agent is impatient, the opposite happens: the income

effect becomes stronger than the substitution effect as EIS increases. Thus, as EIS increases,

the agent increases his/her current leisure and consumption: the working hours decrease with

EIS. In summary, ceteris paribus, the order in the total working hours is Ye, Y , N , and Ne

from lowest to highest.

Based on the above categorization, we provide the long-run implications over the life-

time; It is particularly important to note that EIS plays a pivotal role in determining the

sustainability. We show by simulations that YOLO is sustainable for individuals who are

impatient and have low EIS (Type Y ) in that their total working hours are steady in the long-

run. However, YOLO can lead to a disappointing outcome for individuals who are impatient

and have high EIS (Type Ye). They need to work significantly more when they are old than

they did when they were young, which is against the spirit of YOLO, since on average they

become poorer and poorer due to less work in their early lives. On the other hand, for TypeN

and Ne individuals, they work much longer early in life, especially for Ne, but their working

hours continually decrease over time on average as a result of wealth accumulation.

There are two important notes. First, the sustainability of a life pattern is a matter of the

agent’s working hour choice: consumption choice for any type of agent has consistency in

that the ratio of consumption to the minimum human wealth is fairly stable over time. Sec-

ond and more important, our result highlights the important role of EIS in the sophisticated

characterization of life patterns. Note in the special case of the standard additive-separable

utility setup, life styles of impatient agents are always unsustainable; however, in the recur-

sive utility case, we find that even if an agent is fairly impatient, there exists a cutoff of EIS

level below which the agent’s life style becomes sustainable YOLO (Type Y).

What are policy implications? Before we delve into them, let us start with several re-

lated questions: if a lifestyle is solely governed by the preference, what do we learn from

this exercise? Or is the reason why millenials and Gen Z have different consumption and

leisure patterns from the previous generation is that they were simply born with different

preference? The answer is ‘NO’. There is no empirical evidence that current young genera-
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tions are inherited with different preference from old generations.5 While we categorize the

lifestyles by the preference so far, there is another important driver: financial wealth. More

precisely, consider the pair of EIS and time preference: (ψ, ρ). Then, there is a region of

(ψ, ρ)’s that corresponds to Ye as in Table 1 or more precisely in Figure 10. We find that this

region decreases with financial wealth. That is, types are time-varying and the probability

of an individual being Type Ye becomes higher as wealth decreases. Note that a high EIS

agent can be either Type Ne or Type Ye depending on wealth. This fact provides a striking

implication that not only a Type Y agent but also even an extreme Non-YOLO type agent

(Ne) can switch to choose a completely different life pattern, i.e., extreme YOLO type (Ye)

if the agent gets hit by a significantly bad shock (see Figure 11). In other words, a large

financial setback can lead to a dramatic reduction in working hours for many individuals.

It is crucial to acknowledge that the financial status of the young generations is much

weaker than that of the previous generations. In particular, when comparing the periods

during which each generation entered the workforce after graduation, it is noteworthy that

the millenials and Gen Z face daunting hurdles: high student loan debts, meager retirement

savings, soaring housing prices and costs, and lower lifetime incomes (see, e.g., Brown

(2018) and (FINESSE, 2017)). Given these factors weakening financial status, our analysis

indicates that the current young generation is more likely to optimally choose extreme and

unsustainable YOLO lifestyles compared to previous generations.

In light of our findings, policy interventions aimed at improving the financial standing

of young generations can play a pivotal role in encouraging a shift toward more sustainable

lifestyles. For instance, substantial relief from student loans could be considered. The gov-

ernment can provide tax credits for firms that offer more retirement savings for employees.

Additionally, they can consider tax credits or subsidies to facilitate home ownership among

this age group. The point is that addressing these financial challenges can incentivize young

individuals to work more, accumulate higher wealth, and transition to more sustainable life

choices, which can eventually help the sustainability of the health care and social security

systems in the long-run.

5To our best knowledge, there is no such literature in economics. The organization, psychology, and ethic
literatures do not find any significance generational differences in work ethic. For example, see Weeks and Schaffert
(2019), Zabel et al. (2017), and Pyoria et al. (2017).
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Lastly, one may wonder how the agent’s risky investment contributes to the wealth ac-

cumulation and whether it has long-run implications. It is well known that the optimal risk

asset holdings do not depend on the agent’s EIS if the investment opportunity is constant

(Svensson (1989) and Bhamra and Uppal (2006)). This result holds under a general environ-

ment (e.g., a regime switching investment opportunity and the existence of transaction costs

and taxes: Cai et al. (2018)). We find that the risky asset holdings do depend on the agent’s

EIS if the labor-leisure choice is flexible with the minimum working hour requirement. How-

ever, we also find that its quantitative effect is limited. That is, the difference in the ratio of

the risky asset holdings to the minimum human wealth among different types of agents is

negligible. This quantitative result suggests an important implication: The heterogeneity of

wealth accumulation among the different types of agents is driven by their consumption and

labor-leisure choices over time, not by the result of their risk-taking behaviors.

Literature Review: This paper is closely related to the growing literature on sustainabil-

ity of consumption, as explored by Arrow et al. (2004), Campbell and Martin (2022), and

Pindyck (2022). In these models, sustainability implies that a representative agent with a

CRRA (constant relative risk aversion) utility function self-imposes the constraint that its

utility value does not decrease over time. Arrow et al. (2004) considers this in the determin-

istic sense, while Campbell and Martin (2022) and Pindyck (2022) discuss it in the expecta-

tion sense. These models focus on aggregate consumption to ensure that future generations

are as well off as the current generation. In our model, sustainability centers around indi-

vidual behavior: specifically, whether an individual, when old, will be able to maintain the

same leisure pattern they enjoyed in their youth. Unlike these models, where sustainability

breaks down if the rate of time preference is excessively high due to the use of the CRRA

utility function, we demonstrate that the consumption and leisure choices of agents with

high subjective discounting remain sustainable when the agent’s EIS is low. Our most sig-

nificant finding is that lifestyle choices vary over time based on both wealth and preference.

Leveraging these results, we offer policy suggestions on how to address the potential long-

term challenges posed by the unsustainable lifestyles adopted by a significant portion of the

younger generation.
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There have been few studies on YOLO behaviors in the literature. To our best knowledge,

our paper is the first one to investigate what preference factors determine YOLO lifestyles

by comprehensively analyzing consumption and labor-leisure choice. Heimer et al. (2019)

consider the impact of individuals’ subjective mortality beliefs about life-cycle behavior on

consumption with a CRRA utility setup. The key idea of their model is that the mortality

belief enters the effective subjective discount rate. While they did not formally define YOLO,

whether an individual is YOLO-like or not depends on the mortality belief in Heimer et al.

(2019), which means that eventually the size of the subjective discount rate only determines

the consumption pattern. Our paper is more comprehensive in that we consider the labor-

leisure choice and characterize the lifestyles by both EIS and time preference.

Thanks to the rapid development of online platforms such as Uber, UberEats, and Lyft,

more and more workers are having the choice of flexible workings through online platforms,

particularly taking those flexible jobs as secondary jobs. For example, Hall and Krueger

(2018) document that most of Uber’s driver-partners had full- or part-time employment be-

fore joining Uber and reported that they are attracted by the flexibility. After starting to work

with Uber, many of them continue to hold those previous job positions. Campbell (2018)

reports that only one-third of ride-share drivers earn the most or all of their income from

driving. In addition, workers move in and out of secondary jobs frequently, which is asso-

ciated with large changes in working hours (Paxson and Sicherman (1996) and Renna and

Oaxaca (2006)). The theoretical contribution of our paper is to provide a rigorous framework

in continuous time to formalize this recent trend of the flexibility of labor-leisure choice. To

do so, our framework combines two different lines of literature: canonical models of con-

sumption and labor-leisure choice problem with the power utility setup (Bodie et al. (1992),

Bodie et al. (2004), Farhi and Panageas (2007), and Choi et al. (2008)) and standard mod-

els of recursive utility without labor-leisure choice (e.g., Schroder and Skiadas (1999, 2003,

2005), Kraft et al. (2013, 2017), Matoussi and Xing (2018), and Melnyk et al. (2020)).

There is a large literature in economics and finance considering optimal labor choice with

recursive preference.6 However, this literature mostly studies discrete time models without

closed-form solutions. In addition, our focus relative to these papers is to investigate the

6For example, see Altug et al. (2020); Ai et al. (2018); Caldara et al. (2018); Gourio (2012) and references
therein.
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long-run implications of the agent’s preference, in particular, the agent’s EIS, which is a

novel contribution to the literature.

On the technical contribution to the aforementioned literature, our model is minimal and

stringent for considering a heterogeneous labor supply, but the labor-leisure choice setup

makes the analysis mathematically quite challenging. To obtain analytic solutions, we take a

simplified duality approach to derive the non-linear ODEs (Ordinary Differential Equations)

with a free boundary that corresponds to the wealth level below which the agent provides

more than the minimum labor supply. Then, the solution to the free-boundary non-linear

ODEs can be expressed as the solutions to a system of integral equations in which the free

boundary should be determined implicitly and the domains of the solution function vary

depending on the free boundary. Moreover, the integral equations also include the function

derivatives. Instead of handling this system of integral equations directly, we introduce a new

transform that has several advantages. First, using our new transform, we fix the domain of

the unknown function without the free boundary. Second, the system of integral equations

obtained using the transform does not include the function derivatives. These features of our

new transform help the verification and the solution analysis, as well as the development of a

fast and stable numerical scheme.7 Overall, our paper provides a novel technical contribution

to solving free-boundary problems arising from the recursive utility setup.

The remainder of the paper proceeds as follows. Section 2 explains the model. Section

3 presents the solution analysis. The optimal policies and their long-run implications are

investigated in Section 4. Section 5 investigates the wealth effect. The policy implications

are discussed in Section 6. Section 7 provides the concluding remarks. All the proofs and

the numerical scheme are in the Online Appendix.

7Note that in general the complexity and the inaccuracy of a numerical scheme dramatically increase as the step
size for numerical computation decreases when discretizing free boundary-value problems because of the existence
of the unknown free boundary and the derivative of the unknown function value at each node. In that sense, a
numerical scheme without having the free boundary and the function derivatives is much more computationally
stable.
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2 Model

Financial Market: Consider an infinite horizon and continuous setup on a standard proba-

bility space (Ω,F ,P), where filtration {Ft}t≥0 is generated by the standard Brownian mo-

tion Bt. In the financial market there are a risk-free asset and a risky asset. The risk-free rate

r is a positive constant and the risky asset evolves dSt/St = µSdt+ σSdBt, where µS and

σS are constant coefficients. The market price of risk is κ ≜ (µS − r)/σS , and it is assumed

that κ > 0.

Preference: We consider a problem of an infinitely-lived agent who chooses consumption,

risky investment, and leisure-labor over time. The agent’s consumption and leisure rates are

denoted by ct and lt, respectively. The agent has the Epstein-Zin recursive preference in

which the utility process Vt associated with (ct, lt) is defined by

Vt = Et
[∫ ∞

t
f(s, cs, ls, Vs)ds

]
, (2.1)

where Et[·] is a conditional expectation over filtration Ft and the aggregator f(s, c, l, V ) is

given by

f(s, c, l, V ) = e−ρs
(cηl1−η)

1− 1
ψ

1− 1
ψ

((1− γ)V )1−θ, (2.2)

where θ ≜
1− ψ−1

1− γ
. The parameters ρ > 0, ψ > 0 (ψ ̸= 1), γ > 0 (γ ̸= 1), and η ∈

(0, 1) represent the subjective discount rate, the coefficients of the elasticity of intertemporal

substitution (EIS), the degree of relative risk aversion, and the elasticity of consumption,

respectively. If ψ = 1/γ (equivalently θ = 1), the utility function collapses to the Cobb-

Douglas utility function with consumption and leisure as in Farhi and Panageas (2007).

The aggregator in (2.2) is based on the discounted form aggregator proposed by Herde-

gen et al. (2023a). In the infinite horizon setup with the recursive preference, for a given con-

sumption stream, the existence and uniqueness of the utility process satisfying (2.1) should

be guaranteed before considering optimization. They are thoroughly discussed by Herdegen

et al. (2023a) that using discounted form aggregator is more beneficial than the classical

difference form aggregator. As in Herdegen et al. (2023a) and companion papers Herdegen
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et al. (2023b, 2021), we assume that θ > 0 throughout the paper to guarantee the existence

of our problem with the labor-leisure choice.8 See Appendix A for more discussion on the

aggregator and the assumption θ > 0.

Labor-Leisure Choice: At each point of time t, the agent determines (lt, ht), a pair of the

leisure and labor rates such that lt + ht = L̄, where L̄ represents the maximum available

amount given at t. Note that we will normalize L̄ = 1 when we perform numerical and

simulation analyses later. We use L̄ for the general theoretical analysis. If the agent chooses

ht at [t, t+ dt), the agent receives an income stream wthtdt, where wt is a wage rate.

So far, the above labor-leisure choice setup is similar to that in Bodie et al. (1992).

However, we add a more interesting feature of the labor supply trend in our model. Recently,

more and more workers have gotten a secondary job to earn extra income and these jobs

provide flexibility in working hours (see Paxson and Sicherman (1996), Renna and Oaxaca

(2006), Hall and Krueger (2018) and Campbell (2018); see also our literature review for

details). In this case, a worker must spend a certain fixed portion of hours in the primary and

regular job and allocate the rest of hours between extra working and leisure. For example,

if a teacher spends 8 hours a day at school and works as an UberEats driver for some hours

after leaving school office, she earns the regular income as a teacher and the extra income

as a driver.9 It is notable that the working hours for the extra job are usually flexibly chosen

(which is generally not the case of the primary job). As an example of the agent’s labor-

leisure supply problem, we can consider a case in which one member of a married couple

has a regular job and the spouse flexibly chooses to provide extra labor depending on the

agent’s financial situation.

To model the above choice problem, we assume that there is a maximum leisure rate L,

i.e., 0 < lt ≤ L (L < L̄) and thus L̄− L represents the regular or base working hours from

the primary job. By the same token, we suppose that there is a minimum working hours, i.e.,

ht ≥ L̄ − L. If ht = L̄ − L, it implies that the worker does not choose extra work at t. In

summary, the total labor income, wth(t), is decomposed as the regular income and the extra

8Note that θ < 0 when ψ > 1 and γ > 1. Thus, the case with ψ > 1 and γ > 1 is excluded to guarantee the
existence of solution.

9In general, the wage rates for the primary job and the secondary job are different. For simplicity, we assume
that the two rates are the same. The theoretical results, however, are robust to the extension case in which the two
rates are different. Only some quantitative results are different depending on the difference between the two rates.
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income as follows:

wtht = wt(L̄− lt) = wt(L̄− L)︸ ︷︷ ︸
regular income

+ wt(L− lt)︸ ︷︷ ︸
extra income

.

From what follows, we assume that the wage rate is constant: wt = w, for simplicity.

Agent’s Problem: If we denote the investment amount in the risky asset at time t by πt, the

agent’s wealth dynamics, Xt, at time t > 0 is governed by

dXt = (rXt + (µS − r)πt − ct + w(L̄− lt))dt+ σSπtdBt, X0 = x. (2.3)

Let us define that (c, l, π) belongs to the admissible class A(x) if it is progressively

measurable with respect to Ft and satisfies the following conditions: (i)
∫ t
0 csds < ∞ a.s.,∫ t

0 lsds < ∞ a.s., and
∫ t
0 π

2
sds < ∞ a.s. for all t > 0, and (ii) The wealth process Xt in

(2.3) that corresponds to (c, l, π) satisfies Xt > −wL̄
r .

Then, the agent’s problem is to optimally select the consumption rate c, investment

amount π, and the leisure rate l in order to maximize the recursive utility in (2.1) with

aggregator in (2.2). Thus, the agent’s problem is

max
(ct,lt,πt)∈A(x)

E
[∫ ∞

0
f(t, ct, lt, Vt)dt

]
. (2.4)

3 Analysis

Note that there are two major challenges when deriving the solution. The first one is the

recursive utility structure. The second and more important challenge comes from the flexi-

bility of the labor-leisure choice. As will be shown in what follows, the labor-leisure choice

setup makes the analysis quite complicated, but provides interesting and rich implications.

3.1 Non-linear ODEs and Free Boundary

Before we proceed, we define γ1 ≜ 1 − η(1 − ψ−1) and γ2 ≜ 1 − η(1 − γ). Note that γ1

coincides with γ2 when θ = 1. By applying the dynamic programming principle, the HJB
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(Hamilton-Jacobi-Bellman) equation associated with the value function is10

ρ

θ
V = max

{c,l,π}

[(cηl1−η)1− 1
ψ

1− 1
ψ

((1−γ)V )1−θ+(rx+w(L̄− l)+κσSπ− c)Vx+
1

2
π2σ2SVxx

]
.

(3.1)

Intuitively, the optimal leisure is increasing in the wealth level. Thus, the agent enjoys

the full leisure level L and has minimum working hours when the wealth level is sufficiently

high so that it is greater than or equal to x̄, the threshold of wealth for full leisure. If the

wealth level is less than x̄, the optimal leisure level is less than L.

First consider the case in which x < x̄ and thus the optimal leisure is less than L. The

first-order conditions imply that the candidates for the optimal consumption rate, leisure rate,

and investment amount are given by

l∗(x) = ηψ
(

ηw

1− η

)−γ1ψ {
((1− γ)V )θ−1Vx

}−ψ
, (3.2)

c∗(x) =
ηw

1− η
l∗(x), π∗(x) = − κVx

σSVxx
, (3.3)

respectively, for given wealth level x < x̄. By substituting these into the HJB equation (3.1),

we have the following non-linear ODE for the value function V for x < x̄:

0 =
ηψ

η(ψ − 1)

(
ηw

1− η

)1−γ1ψ
((1− γ)V )−(θ−1)ψ V 1−ψ

x − ρ

θ
V − 1

2
κ2
V 2
x

Vxx
+ (rx+ wL̄)Vx.

(3.4)

Now let us consider the case in which x ≥ x̄. In this case, the optimal leisure is l∗(x) = L,

and the candidate for the optimal consumption rate is

c∗(x) =

[
Lψ

−1−γ1

η
((1− γ)V )θ−1Vx

]− 1
γ1

. (3.5)

10More precisely, since the aggregator has the time term, we first define the value function of problem (2.4) by
v(t, x). Then, v(t, x) satisfies the following HJB equation:

0 = max
{c,l,π}

f(t, c, l, v) + vt + (rx+ w(L̄− l) + π(µS − r)− c)vx +
1

2
π2σ2

Svxx.

By setting v(t, x) = e−
ρ
θ tV (x), we have (3.1).
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The candidate form of the optimal investment amount is given the same as in (3.3). By

substituting the candidate policies into the HJB equation (3.1), we obtain the following non-

linear ODE for the value function V for x > x̄:

0 =
γ1

1− γ1
η

1
γ1L

1− 1
γ1ψ ((1− γ)V )

(θ−1)(− 1
γ1

)
V

1− 1
γ1

x − ρ

θ
V − 1

2
κ2
V 2
x

Vxx
+ (rx+ w(L̄− L))Vx.

(3.6)

Note that the value function V should be C1, i.e., continuously differentiable at x = x̄. This

fact, along with the above ODEs for V , will be used to determine the full leisure threshold

of wealth x̄.

Now we transform the value function V to a new function φ(z) with a new variable z

that satisfies the following relationship with V and x:

V (x) = φ(z)− zφ′(z), x = −φ′(z). (3.7)

Remark 1 (Simplified Duality Approach). The transform in (3.7) is inspired by the standard

duality method. Let J(z) be the dual value function obtained from the standard dual problem

with additive-separable utility. Then, J(z) and the primal value function V (x) has the

duality relationship: V (x) = infz>0(J(z) + zx). From the first-order condition, we have

the relationship between the primal variable x and the dual variable z as x = −J ′(z), and

it follows that V (x) = J(z)− zJ ′(z).

Note that the approach summarized in Remark 1 in general works well not only for the

additive-separable utility case but also for the recursive utility setup. From definition (3.7),

we obtain

Vx = z and Vxx = − 1

φ′′(z)
. (3.8)

Given the concavity of V (x) (equivalently the convexity of φ(z)), there is the inverse re-

lationship between x and the new variable z defined implicitly by (3.7): x < x̄ (x ≥ x̄)

corresponds to z > z̄ (0 < z ≤ z̄), where z̄ is defined implicitly by x̄ = −φ′(z̄).

Let us define φ1(z) ≜ φ(z) for z ≥ z̄ and φ2(z) ≜ φ(z) for 0 < z ≤ z̄. Then, we can

13



derive the non-linear ODEs for φ1(z) and φ2(z) as follows:

0 =
ηψ

η(ψ − 1)

(
ηw

1− η

)1−γ1ψ (
(1− γ)(φ1(z)− zφ′

1(z))
)−(θ−1)ψ

z1−ψ (3.9)

− ρ

θ
(φ1(z)− zφ′

1(z)) +
1

2
κ2z2φ′′

1(z) + wL̄z − rzφ′
1(z), z > z̄,

0 =
γ1

1− γ1
η

1
γ1L

1− 1
γ1ψ

(
(1− γ)(φ2(z)− zφ′

2(z))
)− θ−1

γ1 z
1− 1

γ1 (3.10)

− ρ

θ
(φ2(z)− zφ′

2(z)) +
1

2
κ2z2φ′′

2(z) + w(L̄− L)z − rzφ′
2(z), 0 < z < z̄.

Recall that the value function V should be C1 at x = x̄, which leads to the following

free-boundary conditions at z = z̄:

φ1(z̄) = φ2(z̄), φ′
1(z̄) = φ′

2(z̄). (3.11)

Once we obtain the solutions φ1(z) and φ2(z) to the ODEs (3.9) and (3.10), respectively, and

the free boundary z̄ satisfying (3.11), the full leisure threshold of wealth x̄will be determined

as

x̄ = −φ′
1(z̄) = −φ′

2(z̄). (3.12)

Remark 2. In the case of additive-separable utility, the benefit of simplified duality approach

in (3.7) is that, in contrast to the highly non-linear ODE for the primal value function V (x),

the ODE for φ(z) is a linear ODE. In our model with recursive preference, although the

ODEs for φ1(z) and φ2(z) in (3.9) and (3.10) are not linear, they only have one additional

non-linear term, which makes the analysis more tractable.

3.2 Solution

Before deriving the solutions to ODEs (3.9) and (3.10), let n+ > 1 and n− < 0 be the two

real roots of the following quadratic equation:11

q(n) ≜
1

2
κ2n2 +

(
ρ

θ
− r − 1

2
κ2

)
n− ρ

θ
= 0.

11Since q(0) = −ρ
θ < 0 and q(1) = −r < 0, it is guaranteed that n+ > 1 and n− < 0.
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We also define K and K2 as follows and assume that both of them are positive:12 K ≜

−q
(
1− 1

γ

)
> 0, K2 ≜ −q

(
1− 1

γ2

)
> 0. Here, we can verify that particular solutions

to ODEs (3.9) and (3.10) are

φp,1(z) =
γ

1− γ
A1z

1− 1
γ +

wL̄

r
z, φp,2(z) =

γ2
1− γ2

A2z
1− 1

γ2 +
w(L̄− L)

r
z,

respectively, where

A1 ≜

[
ηψ

ψγKηθ

(
ηw

1− η

)1−γ1ψ
] 1

1+(θ−1)ψ

, A2 ≜

[
1− γ2
γ2

γ1
1− γ1

η
1
γ1L

1− 1
γ1ψ

K2
η
θ−1
γ1

] γ1
γ1+(θ−1)

.

(3.13)

Then, the general solutions to ODEs (3.9) and (3.10) are given as

φ1(z) = α1(z)z
n+ + β1(z)z

n− + φp,1(z), z ≥ z̄, (3.14)

φ2(z) = α2(z)z
n+ + β2(z)z

n− + φp,2(z), 0 < z ≤ z̄, (3.15)

subject to

α′
i(z)z

n+ + β′i(z)z
n− = 0 for i = 1, 2. (3.16)

Note that the explicit solution forms for αi(z) and βi(z) are provided in Proposition A.1

located in Appendix A with the concrete analysis for its derivation process. Then, by using

the relationship between the value function and the solutions to the ODEs (3.9) and (3.10),

we reconstruct the value function V (x) in (2.4) as

V (x) =

 φ1(Z1(x))−Z1(x)φ
′
1(Z1(x)), x ≤ x̄

φ2(Z2(x))−Z2(x)φ
′
2(Z2(x)), x ≥ x̄,

where Zi(x) is implicitly defined by x = −φ′
i(Zi(x)) for i = 1, 2, and x̄ = −φ′

1(z̄) =

−φ′
2(z̄).

Now we are ready to state the analytic form of the agent’s optimal policy.

12K > 0 and K2 > 0 imply that n− < 1− 1
γ < n+ and n− < 1− 1

γ2
< n+, respectively.
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Proposition 1. The optimal investment π∗(x), consumption c∗(x), and leisure l∗(x) are

given by

π∗(x) =


κ

σS
Z1(x)φ

′′
1(Z1(x)), x ≤ x̄,

κ

σS
Z2(x)φ

′′
2(Z2(x)), x ≥ x̄,

(3.17)

c∗(x) =


ηw
1−η l

∗(x), x ≤ x̄,

ηw
1−ηL

[
F2

(
Z2(x)
z̄

)
F2(1)

]− θ−1
γ1 (

Z2(x)
z̄

)− 1
γ2 , x ≥ x̄,

(3.18)

l∗(x) =


L

[
F1

(
Z1(x)
z̄

)
F1(1)

]−(θ−1)ψ (
Z1(x)
z̄

)− 1
γ
, x ≤ x̄,

L, x ≥ x̄,

(3.19)

where the functional forms of F1 and F2 are given in Appendix A.

We will investigate the implications of the optimal policies and characterize the types of

agents by using the optimal behaviors in Section 4. Before it, for the sake of comparison, we

first consider two special cases in Section 3.3.

3.3 Special Cases

Here we consider the following two special cases: (i) the additive-separable utility case

(when ψ = 1/γ) and (ii) the recursive utility with fixed working hours (lt = l0 for constant

l0 > 0).

Special Case I (additive-separable utility): Recall that when ψ = 1/γ, the recursive utility

is reduced to the Cobb-Douglas utility function of consumption and leisure. Consequently,

the ODEs (3.9) and (3.10) become linear ODEs. Then, we can derive the explicit solutions

similar to those in Choi et al. (2008). Note that γ1 = γ2 and θ = 1 when ψ = 1/γ. Thus,

we add the superscript θ = 1 to the notation when ψ = 1/γ.

We can verify that the free boundary becomes13 z̄θ=1 = ζθ=1 = ρ
(
ηw
1−η

)−γ2
L−γ . In

addition, αi’s and βi’s become constants and especially αθ=1
1 = βθ=1

2 = 0. The solutions to

13More precisely, we use (A.5) and (A.6) to derive the result.
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ODEs (3.9) and (3.10) when θ = 1 are given as

φθ=1
1 (z) =βθ=1

1 zn− +
γ

1− γ
Aθ=1

1 z
1− 1

γ +
wL̄

r
z, z ≥ z̄θ=1,

φθ=1
2 (z) =αθ=1

2 zn+ +
γ2

1− γ2
Aθ=1

2 z
1− 1

γ2 +
w(L̄− L)

r
z, 0 < z ≤ z̄θ=1,

where

βθ=1
1 =−

(n+ − 1 + 1
γ )(

1
γ − 1

γ2
)

(n+ − n−)(1− n− − 1
γ2
)(1− n−)(1− γ)

Aθ=1
1

(
z̄θ=1

)1−n−− 1
γ
< 0, (3.20)

αθ=1
2 =

(1− n− − 1
γ2
)( 1γ − 1

γ2
)

(n+ − n−)(n+ − 1 + 1
γ )(n+ − 1)(1− γ2)

Aθ=1
2

(
z̄θ=1

)−(n+−1+ 1
γ2

)
> 0, (3.21)

with Aθ=1
1 = η

1
γ

Kθ=1η

(
ηw
1−η

)1− γ2
γ and Aθ=1

2 = η
1
γ2 L

1− γ
γ2

Kθ=1
2

.

Corollary 1 (When ψ = 1/γ). By setting ψ = 1/γ, the optimal consumption, leisure, and

investments when θ = 1 are given as

cθ=1(x) =

 Kθ=1η
(
x+ wL̄

r + n−β
θ=1
1 Zθ=1

1 (x)
n−−1

)
, x ≤ x̄θ=1,

Kθ=1
2

(
x+ w(L̄−L)

r + n+α
θ=1
2 Zθ=1

2 (x)
n+−1

)
, x ≥ x̄θ=1,

lθ=1(x) =


Kθ=1(1− η)

w

(
x+ wL̄

r + n−β
θ=1
1 Zθ=1

1 (x)
n−−1

)
, x ≤ x̄θ=1,

L, x ≥ x̄θ=1,

πθ=1(x) =


κ

σS
Zθ=1
1 (x)(φθ=1

1 )′′(Zθ=1
1 (x)), x ≤ x̄θ=1,

κ

σS
Zθ=1
2 (x)(φθ=1

2 )′′(Zθ=1
2 (x)), x ≥ x̄θ=1,

where Zθ=1
i (x) is defined implicitly by x = −(φθ=1

i )′(Zθ=1
i (x)) for i = 1, 2, and x̄θ=1 =

−(φθ=1
1 )′(z̄θ=1) = −(φθ=1

2 )′(z̄θ=1).

There is an important remark on the optimal policies for a special case when θ = 1. Both

optimal consumption and leisure increase with ρ (see Figure 1). In other words, the agent

tends to consume more and enjoy more leisure as the level of the agent’s subject discounting

increases. This result is generally true for the recursive utility case. However, the quantita-

tive impact of ρ will significantly differ by ψ, as will be seen later.
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Figure 1: The optimal consumption and working hours for the additive-separable utility case
(θ = 1). The other common parameters are r = 0.02, κ = 0.25, η = 0.7, L̄ = 1, L = 0.6, w =
0.5, γ = 2.

Special Case II (recursive utility with fixed working hours): Suppose the agent cannot

adjust their working hours. In this case, the solution turns out to be the same as the case in

which the risk aversion parameter is given by γ2. Moreover, the following corollary shows

how risk investment and consumption are affected by EIS.

Corollary 2. Suppose the agent cannot adjust their working hours, i.e., lt = l0 for some

constant l0 for all t ≥ 0. The optimal investment and consumption are given as

π0(x) =
κ

σSγ2

(
x+

w(L̄− l0)

r

)
, c0(x) = K0

(
x+

w(L̄− l0)

r

)
,

where K0 =
(
ρ− r − κ2

2γ2

)
1
γ1

+ r + κ2

2γ2
. Then, the following results hold:

(a) The risky investment is independent of ψ.

(b) If
κ2

2γ2
+ r > ρ, the substitution effect dominates, i.e., consumption decreases as ψ

increases.

(c) If
κ2

2γ2
+r < ρ, the income effect dominates, i.e., consumption increases asψ increases.
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Figure 2: Optimal risky investment. The impact of EIS on risky investments is fairly small. The
other parameters are r = 0.02, κ = 0.25, η = 0.7, w = 0.5, γ = 2, L̄ = 1, L = 0.6. The
parameters for the market and the preference are chosen from widely used ones in the various
literature. The total available time for leisure and labor is normalized as L̄ = 1. The minimum
working hours is set as L̄−L = 40% of the total available time. This parameter configuration is
used for all the figures and examples in the paper.

4 Optimal Policies and Implications in the Long Run

4.1 Discussion of Optimal Policies

Now let us investigate the implications for the optimal investment (3.17), consumption

(3.18), and leisure (3.19) given in Proposition 1 in detail. In particular, we do so by compar-

ing them with those from the case in which the labor supply is fixed.

First, regarding the optimal portfolio (3.17), Corollary 2(a) is a well-known result when

the labor supply is fixed (Bhamra and Uppal, 2006; Svensson, 1989; Cai et al., 2018): If

the investment opportunity is constant, i.e., µ, σ, and r are constant, then the EIS does not

affect the risky investment when the labor supply is not flexible. On the contrary, the risky

investment depends on ψ in the case in which the agent optimally adjusts working hours

with the minimum working hour requirement. This is the immediate consequence from

(3.17) given in Proposition 1.

Corollary 3. π∗t of (3.17) is not constant with respect to ψ.

The intuition for Corollary 3 is as follows. If financial wealth is sufficiently high (i.e., Xt >

x̄), the agent works for the minimum amount of hours. If Xt < x̄, the agent works more.

This change according to the wealth level implies that the effective EIS defined by the value
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Figure 3: Optimal consumption as a function of wealth. The effects of EIS on consumption
are opposite according to the degree of the patience (ρ). The left panel shows that consumption
decreases in ψ when the agent is patient (ρ = 0.02). The right panel shows that consumption
increases in ψ when the agent is impatient (ρ = 0.06). The other parameters are the same as in
Figure 2.

function (not by the utility function), i.e., −xV ′′(x)
V ′(x) , changes as x does, which makes the

optimal risky portfolio depend on EIS. Observe from (3.3) that the effective EIS is inversely

related to the optimal portfolio.

However, it is important to note that the quantitative impact is limited, as seen in Figure

2. This result implies that the existence of the free boundary x̄ > 0 has little effect on the

risky investment. From the result of Cai et al. (2018), we see that the quantitative effect will

still be very small even if we extend the current model to a more general case with a regime

switching investment opportunity set or with the presence of taxes and transaction costs.

Second, in order to understand how EIS affects consumption (3.18), it is important to see

whether the substitution effect dominates the income effect or vice versa. In the case of the

non-flexible labor-leisure choice, Corollaries 2(b) and (c) show the exact conditions of which

one dominates the other when the labor supply is fixed. If κ2/γ2 + r > ρ, it implies that the

financial market summarized by the Sharpe ratio (κ) and the risk-free rate (r) is attractive

relative to the rate of time preference or subject discounting (ρ). Therefore, as ψ increases,

the agent consumes less and saves more in order to increase consumption in the future. The

opposite case occurs when the agent is fairly impatient, i.e., when κ2/γ2 + r < ρ.

We find that a similar result still holds when the labor supply is flexibly adjusted, while

the exact conditions are hard to obtain due to the complexity of the solution form. More
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Figure 4: Optimal working hours as a function of wealth. In the left panel, optimal working
hours are increasing in ψ when the agent is patient (ρ = 0.02). In the right panel, the optimal
working hours are decreasing in ψ when the agent is impatient (ρ = 0.06). The other common
parameters are the same as in Figure 2.

precisely, if ρ is relatively small, i.e., the financial market is attractive, then the substitu-

tion effect becomes stronger than the income effect as EIS increases: current consumption

decreases with ψ (the left panel of Figure 3). In contrast, if ρ is sufficiently high, i.e., the fi-

nancial market is not attractive relative to the agent’s impatience, the income effect becomes

stronger than the substitution effect as EIS increases: current consumption increases with ψ

(the right panel of Figure 2).

Third and most important, regarding the optimal leisure (3.19), Figure 4 presents the

optimal working hours. There are two things to note. First, the agent works more than the

minimum working hours if and only if x < x̄, where x̄ is determined by (3.12). Second, x̄

increases with ψ when the agent is patient because the substitution effect becomes stronger

than the income effect as ψ increases (the left panel of Figure 4). This implies that if the

agent is patient, he/she tends to work more as ψ increases. In contrast, x̄ decreases with

ψ when the agent is sufficiently impatient (the right panel of Figure 4). The reason is that

in this case, as ψ increases, the income effect becomes stronger than the substitution effect.

This implies that if the agent is impatient, he/she tends to work less as ψ increases. Figure 5

also confirms this property of x̄ as a function of ψ.

As a summary of optimal policies, we can categorize agents into the following four types:

(i) agents with (low ρ, low ψ), (ii) agents with (low ρ, high ψ), (iii) agents with (high ρ, low

ψ), and (iv) agents with (high ρ, high ψ), as presented in Table 1. (iii) and (iv) are called
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Figure 5: Threshold x̄ according to ψ. In the left panel, x̄ is increasing in ψ when the agent is
patient (ρ = 0.02). In the right panel, x̄ is decreasing in ψ when the agent is impatient (ρ = 0.06).
The other parameters are the same as those in Figure 2.

YOLO types, and (i) and (ii) are called Non-YOLO types. Recall that the impact of ρ in the

case of high ρ is opposite to that in the case of low ρ. Until now, it may not sound clear why

we call (ii) and (iv) ‘extreme’ in addition to YOLO and Non-YOLO. We will explain in more

detail in the following section by using the long-run implications of the optimal policies.

Before we close this subsection, note that among the three preference factors of the

Epstein-Zin utility setup, i.e., (a) risk aversion, (b) EIS (Elasticity of Intertemporal Substitu-

tion), and (c) subjective discounting, we restrict our attention to (b) and (c) as determinants

of whether an individual exhibits a YOLO-type behavioral pattern or not. This selection is

motivated by two primary reasons. Firstly, while YOLO does involve an element of risk-

taking, it is commonly associated with an excessive willingness to take risks, a characteriza-

tion that does not align neatly with the rational and risk-averse foundation of an economic

agent’s model. Secondly, it is intuitive to see that (b) and (c) hold more relevance in guiding

decisions concerning the allocation of resources between present and future consumption,

and this allocation is mediated through the labor-leisure choice and, consequently, income

generation.

4.2 Implications in the Long Run

So far we have investigated the optimal policies as a function of x. Using these baseline

results in Section 4, we will further explore the dynamics of optimal policies over time.
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More precisely, we will discuss the implications for wealth accumulation and the long-run

sustainability of the consumption and labor-leisure choice for each type.
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Figure 6: The sample paths of working hours: the left panels are when the substitution effect
dominates (small ρ) and the right panels are when the income effect dominates (high ρ). The
top panels are when the agent becomes wealthier over time and the bottom panels are when the
agent becomes poorer over time. The other parameters are the same as those in Figure 2.

First, we present how the agent changes the labor supply over time. Figure 6 shows

several sample paths of working hours. The upper panels are the cases where the agents

start with a low level of wealth, but the underlying process (or the asset price in the financial

market) increases on average in time: There are more and larger good shocks than bad shocks

to agents’ wealth in this sample path. Therefore, the agents are initially poor, but become

richer over time so that the working hours eventually decrease to the minimum level. In

contrast, the lower panels are the cases where the agents start with a high level of wealth, but

the underlying process decreases on average in time in this sample path. Thus, the agents are

initially rich, but become poorer and poorer over time so that the working hours generally

increase in time. Note that for patient agents x̄ increases with ψ, which means that extra
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working hours of a Type Ne agent are always higher than those of a Type N agent over time

except when both agents are sufficiently rich: the red lines in general are higher than the blue

one in the left panels in Figure 6. In contrast, for impatient agents x̄ decreases with ψ, which

means that extra working hours of a Type Ye agent are mostly lower than those of a Type Y

agent except when both agents are sufficiently rich: the red lines in general are lower than

the blue one in the right panels of Figure 6.

While Figure 6 only shows several special cases, we find that these patterns are typical

patterns over time and thus have significant implications for wealth accumulation and life-

time labor supply. To see the long-run effect of labor supply on wealth accumulation, we

generate 10,000 sample paths of the underlying process for 35 years and obtain the aver-

age values of (i) the ratio of the extra working hours to the minimum working hours, L−l
∗
t

L̄−L ,

(ii) consumption/mHW, (iii) investment/mHW, and (iv) financial wealth over time. Here,

we define the mHW (minimum Human Wealth) by the sum of current wealth (X) and the

minimum human capital (mHC) that represents the present value of the minimum lifetime

income: mHW = X +mHC, where

mHC =

∫ ∞

0
e−rtw(L̄− L)dt =

(L̄− L)w

r
.

Figure 7 plots those four average values in time of two patient Non-YOLO agents with

different EIS’s (TypeN and TypeNe) starting with the same initial wealth. In their early life,

the Type Ne agent works harder, earns more income (the top-right panel) and consumes less

(the bottom-left panel). Consequently, the Type Ne agent accumulates more wealth than the

Type N agent does over time (the top-left panel). Note that their risky investment patterns

are not much different (the bottom-right panel) over time. It is notable that the total working

hours of the Type Ne agent gradually decrease in time while those of the Type N agent

are quite flat (the top-right panel). Therefore, we interpret that the consumption and leisure

pattern of Type Ne agents is more extreme. Note that the Type Ne agent accumulates more

wealth over the life cycle thanks to less consumption and less leisure early in life.

In contrast, Figure 8 plots the same four average values in a time of YOLO agents (Type

Y and Type Ye) starting with the same initial wealth. In this case, as in the previous Non-

YOLO case, one may suspect that the Type Y agent mostly works longer over the entire
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Figure 7: Average sample path over 35 years when the agent is patient (ρ = 0.02). The other
parameters are the same as those in Figure 2.

lifetime than the Type Ye agent does. However, strikingly, it is not the case. As seen in the

top-right panel of Figure 8, in the early stage of life, the Type Ye agents enjoy more leisure

(the top-right panel) and consume a lot more in the proportion of wealth than the Type Y

agent does (the bottom-left panel). As a consequence, the wealth level of the Type Ye agent

decreases on average over time while that of the Type Y agents gradually increases (the top-

left panel). Then, the former’s wealth level becomes significantly low at a certain point in

life so he or she has to work longer and longer in order to maintain a higher consumption rate

proportional to wealth. Again the risky investments between the two agents are not much

different (the bottom-right panel). This fact confirms that the main reason why the Type Ye

agent has to work longer in later life is that he/she consumes too much and works less early

in life so that his/her wealth level becomes smaller and smaller later in life, not from the

return on investment being small.

So far, we have separately compared TypesN andNe and Types Y and Ye with respect to
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Figure 8: Average sample path over 35 years when the agent is impatient (ρ = 0.06). The other
parameters are the same as those in Figure 2.

the average values of the entire sample paths. However, considering only the average values

might sometimes be misleading. More precisely, any type of agent will be able to enjoy the

maximum leisure if he/she is lucky, i.e., he/she receives a lot of good shocks for a long time

and thus becomes richer and richer. On the other hand, any type of agent should do work

more and more if he/she is unlucky in that he/she receives a lot of bad shocks for a long time

and thus becomes poorer and poorer. If the average working hours of this unlucky group is

very high (low), it can significantly contribute to the increase (reduction) in the average. In

fact, the average working hours of Type Y agents gradually increase, which is driven in fact

by the extremely unlucky group, as will be seen below.

Figure 9 shows the dynamics of wealth and the extra working hours by each subgroup.

More precisely, we divide the 10,000 samples into five quintiles: top 20%, top 20-40%, top

40-60%, top 60-80%, and bottom 20% with respect to the final wealth. Then, we exclude the

top and bottom 20% and plot the average wealth and the ratio of the average extra working
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hours to the minimum working hours of the middle three groups in the sample paths. The

wealth level of the Type Ne agent is the highest, that of the Type N agent is the second, that

of the Type Y agent is the third, and that of the Type Ye agent is the lowest for the entire life

for every subgroup sample. The Type Ne agent’s extra working hours are the highest, the

Type N agent’s are the second, and the Type Y agents are the lowest for most of lifetime if

we compare only the three groups: Ne, N , and Y . However, the extra working hours of Ye

are very different: they are the lowest in early life and become the highest in later life. For

all subgroups, the wealth level of the Type Ye decreases and the extra working hours of the

Type Ye increase over time.
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Figure 9: The average wealth and extra working hours of three quintiles (top 20-40% (left panel),
top 40-60% (middle panel), and top 60-80% (right panel) of the total samples in the final wealth
level).

In summary, going back to the classification summarized in Table 1, we say that a life

pattern is sustainable if the agent, when old, is likely to maintain the same leisure pattern as

when they were young. Note that the ratio of consumption to the (minimum) human wealth

is stable for every type of agent. In this sense, the consumption choice is consistent for any
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type of agent. Therefore, we determine sustainability by using the long-run consistency of

the labor-leisure choice.

There are two types of individuals who choose YOLO (Type Y and Ye). YOLO is sus-

tainable for Type Y agents in the sense that they are likely to maintain their working hours

steadily in early and later life, especially, as shown by the dynamics of wealth and the work-

ing hours by each subgroup in Figure 9.14 The speed of their wealth accumulation is low, but

wealth gradually tends to increase. In contrast, if the YOLO style results from the preference

of being simply impatient and more eager to substitute current consumption with future in-

come, the individual with such preference (i.e., Type Ye) will work longer and longer when

old, while he or she can enjoy much leisure when young. This life pattern indeed contradicts

the spirit of YOLO: we regard it as unsustainable YOLO.

5 Wealth Effect and Policy Implications

We presented the long-run sustainability analysis in Section 4.2 based on the simulation

results. Note that in the simulations, we let each agent start with the same initial wealth level

and track each agent’s consumption and labor-leisure choices in time.

In this section, we demonstrate that individuals’ types evolve over time due to the influ-

ence of the wealth effect. Specifically, an individual’s decisions regarding work and leisure

can significantly vary depending on their wealth status. For instance, it is possible that an in-

dividual who was previously inclined towards a financially prudent (or sustainable) lifestyle

(i.e., characterized as Y , N , and Ne types) can transition to an extreme YOLO type (Ye)

if they experience financial setbacks over time. In our context, it is important to note that

these setbacks are not necessarily idiosyncratic, but can result from systemic shocks in the

financial market. Therefore, this finding carries significant implications for policymaking,

which will be discussed in Section 6.
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Figure 10: The sign of D(x) when x = 0 in the (ψ, ρ)-plane.

5.1 Wealth Effect on Life Styles

First, we start with the static but more analytic characterization beyond the sustainability

results. We visualize the life patterns in the (ψ, ρ)-plane by using the expected wealth change

for each x. In this case, the expected change in wealth at Xt = x or the drift of the optimal

wealth process from (2.3) is

D(x) ≜ rx+ (µS − r)π∗(x)− c∗(x) + w(L̄− l∗(x)), (5.1)

where π∗(x), c∗(x), and l∗(x) are given by (3.17), (3.18), and (3.19), respectively. Figure

10 illustrates two regions in which D(x) have different signs for x = 0 on the (ψ, ρ)-plane.

In particular, the gray region represents the set of {(ψ, ρ) |D(0) < 0}. Each type of agent

is located near the corner of the (ψ, ρ)-plane, as specified in the figure. We can easily see

that the Ye life pattern is not sustainable since its expected wealth change is fairly negative

(E[dX|X = 0] << 0). The drift ofNe is the highest, that ofN is the second, that of Y is the

third, and that of Ye is the lowest. Note that it is a clockwise order: the highest at the right-

bottom corner and the lowest at the right-top corner. The reason is that the impact of EIS is

opposite for the cases of high discounting and low discounting. The agent with (ψ, ρ) closer

14More precisely, the working hours of the top 40-80% decrease later in life and they outweigh the increasing
working hours of the top 20-40%.
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Figure 11: The region where D(x) < 0 expands as x decreases. The grey area in the left panel
is the region of D(x) < 0 when x = 0 and the entire colored area including the grey area in
the right panel is the region of D(x) < 0 when when x = −4. (ψ1, ρ1) is a Type Ne agent and
(ψ2, ρ2) is a Type Y agent in the left panel, but both becomes type Ye in the right panel after
getting bad financial shocks.

to the top-right corner is more likely to have unsustainable YOLO as this agent’s wealth in

the next period is more likely be smaller than current wealth. In contrast, the agent with

(ψ, ρ) closer to the top-left corner is more likely to have sustainable YOLO.

Second and more important, we highlight that the extent of the gray area increases as

wealth decreases as illustrated in Figure 11. This observation suggests that an individual’s

lifestyle can evolve over time. To be more precise, whether someone embraces a YOLO

lifestyle or not can significantly hinge on luck over time. To see the impact of wealth, for

instance, consider two agents in Figure 11 indexed by a preference pair (ψi, ρi) at time t for

i = 1, 2. Note that both (ψi, ρi)’s fall outside the shaded region depicted in the left panel

of Figure 11: The current classification of Agent i is Ne and Y for i = 1, 2, respectively.

However, if the agents experience a significant negative financial shock during (t, t+h), the

shaded region expands, causing (ψi, ρi) to be situated within it at time t + h as in the right

panel of Figure 11.

These transitions imply that a large financial setback can lead to a dramatic reduction in

working hours for many individuals. It might not be striking that the transition from Y to Ye

thank to the bad shock for agent 2. However, the case of Agent 1 demonstrates that even an

individual who was initially classified as an extreme non-YOLO type can transition to being

an extreme YOLO type some time later. Conversely, an agent whose life style is an extreme
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non-YOLO at some point of time can become an extreme YOLO type after experiencing

significant bad shocks on his/her financial status. This shift between Ye and Ne is a dramatic

change in terms of the life pattern choice, which highlights the importance of the financial

status when the agent chooses a life pattern. This finding leads to policy implications that

will be discussed in Section 6.

5.2 Role of EIS on Sustainability

Related to the graphical presentation, Proposition 2 provides an important implication for

the role of EIS in determining the sustainability of a life pattern.

Proposition 2. When θ = 1 and the agent is impatient enough so that

ρ > ρ̂ ≜ r +
κ2

2
max

[
γ + 1

γ
,
γ2 + 1

γ2

]
, (5.2)

the drift of the optimal wealth process is negative, that is, D(x) < 0, for all x.

Proposition 2 implies that in the case of the additive-separable utility setup, the life pat-

tern of an agent with high ρ is unlikely to be sustainable. More precisely, there exists a cutoff

ρ̂ such that if the agent’s time preference is greater than ρ̂, his/her life pattern is unsustain-

able for any given wealth. For example, in Figure 10 all the agents with ρ > ρ̂ are extreme

YOLO types for the case of the CRRA utility function. This result is consistent with that

from the consumption sustainability literature (Campbell and Martin (2022); Campbell and

Sigalov (2022); Pindyck (2022)).

However, we find that in a general recursive utility setup, the life pattern chosen by the

agent with high subject discounting can be sustainable if the agent’s EIS is low (i.e., the case

for Type Y agents). The agent’s with (ψ, ρ) closer top-left corner is of type Y and his/her

life pattern is more likely to be sustainable. In addition, the key point is that the grey area

decreases with wealth. In other words, the agent with any pair of (ψ, ρ) optimally chooses

a sustainable life pattern when his/her wealth becomes sufficiently high. This observation

leads to policy implications in the next subsection.
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6 Policy Implications

Before we delve into police suggestions, let us first address a fundamental question: why is

YOLO so popular, especially among Gen Z and millennials? It is essential to note that there

is no substantial evidence indicating a distinct preference distribution among these younger

generations compared to older ones (Weeks and Schaffert (2019), Zabel et al. (2017), and

Pyoria et al. (2017)). In other words, one cannot argue that YOLO became popular merely

because these generations were inherently predisposed to it. We acknowledge the possibil-

ity of behavioral explanations rooted in societal or environmental factors that influenced the

younger generations during their formative years. However, the primary objective of this pa-

per is to propose economic policy implications based on the rational expectation framework.

It is crucial to highlight the significant disparity in financial situations between the current

young generations and their predecessors when they enter the workforce after graduating.

Specifically, Gen Z and millennials are substantially burdened by high student loan debts

and soaring housing prices, as pointed out in studies such as (FINESSE, 2017). Numerous

reports have underscored the alarming trend that the current young generation is likely to

be financially disadvantaged compared to their parents over their lifetime, primarily due to

these challenges. Moreover, the lack of robust retirement savings provided by employers, as

indicated by (Brown, 2018), further exacerbates their financial constraints in early adulthood.

Considering the aforementioned factors, it becomes apparent within our theoretical frame-

work that the popularity of YOLO among the current young generation can be attributed to

their challenging financial circumstances, both in absolute terms (such as high levels of debt

and inadequate retirement savings) and relative terms (including significantly higher housing

costs and a seemingly diminished lifetime income compared to previous generations). For

example, according to the Consumer Credit Data (G.19) by the federal Reserve System, the

total student loan debt has almost tripled over 15 years and Federal student debt has grown

by over 8.5 times since 1995 (extensive margin)15 Adjusting inflation, the average amount

of debt of college graduates per borrower are $14,061 in 1990, but it increases to $31,500 in

2020 (intensive margin). While the absolute debt growth rate is 124%, the income growth

rate is much smaller. More precisely, the average debt-to-income ratio defined by the debt

15See the summary in https://tinyurl.com/5n8r89ww.
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at college graduation to the average starting salary is 24.8% in 1990 and 54.3% in 202016.

The average sales price of houses sold for the United States is $150,100 in Q4 of 1990 and

$403,900 in Q4 of 2020 (FRED Economic Data).17

To illustrate the economic environments graphically, an individual born 2-30 years ago

is far more likely to fall within the shaded region in Figure 11 than an individual born 4-60

years ago, given that they are given the same preference parameters. This disparity vividly

illustrates the financial constraints faced by the current young generation, providing a com-

pelling explanation for the widespread adoption of the YOLO mentality among them.

Therefore, we argue that any polices that directly or indirectly improve the financial

status of the current young will effectively encourage the young to choose sustainable life

styles. A notable example is the substantial reduction or exemption of student loans. Another

approach involves providing significant tax credits for first-time home buyers within this age

group and offering employers subsidies to increase employees’ retirement savings. However,

implementing these measures can be financially burdensome. While it is beyond the scope

of the current paper, we can cautiously suggest a heuristic idea for the cost-benefit analysis.

There needs to be a balance between the cost of distributing these subsidies and the benefits

gained from encouraging a substantial number of individuals, who might otherwise adopt

extreme YOLO life styles, to embrace more sustainable lifestyles. Considering this trade-

off, we can identify an optimal subsidy policy that maximizes social welfare.

7 Concluding Remarks

In this paper we set up a model of a rational economic agent with recursive utility and a

flexible labor-leisure choice with the minimum working hour requirement. We characterize

the types of agents by using subject discounting and EIS in terms of their consumption and

leisure patterns. We also examined whether these lifestyles are sustainable in the long-run,

i.e., whether agents, when old, can continue to have the same lifestyle as they had when

they were young. We also found that lifestyles are time-varying according to the agent’s

financial status as well as the agent’s preference. Based on this fact, we suggest several policy

16https://wordsrated.com/student-loan-debt-by-year/
17https://fred.stlouisfed.org/series/ASPUS
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implications to address the long-term challenges that can arise from discouraged workers

transitioning from sustainable lifestyles to unsustainable ones due to financial setbacks.

Our model is fairly stylized and stringent in the sense that the model abstracts from

two important aspects of the labor-leisure choice in real life: we did not consider voluntary

retirement and we assume that the wage rate is constant in our model. With respect to

the first, adding an optimal retirement decision into the agent’s action would not change

the implications much. For instance, we show that the lifestyle of the Type Ye agent is not

sustainable because he/she becomes poorer on average later in life. It is well-known from the

retirement literature that an economic agent optimally retires if and only if he/she becomes

sufficiently rich (Choi and Shim (2006), Farhi and Panageas (2007), and Choi et al. (2008)).

In our case, Type Ye agents will not be able to retire early since they will become poorer

over time. They also will work more later in life. Therefore, it will still be true that under

the voluntary retirement setup, the YOLO-like lifestyle of Type Ye agents is not sustainable

and they can hardly retire.

Regarding the wage, adding uncertainty or risk in the wage rate into our model would

be very interesting. It would change the labor-leisure choice over the time, which could pro-

vide various additional implications. While the analysis will be fairly complicated (perhaps

no analytic solutions would be obtained), an intuitive conjecture is that YOLO type agents

would enjoy more leisure during the time when the wage rate is high. The expected growth

rate of wealth would be different depending on the volatility of the wage rate dynamics.

However, we doubt that the result for long-term sustainability will be different from the case

in which the wage rate is constant.

34



References

H. Ai, M. M. Croce, A. M. Diercks, and K. Li. News shocks and the production-based term

structure of equity returns. Review of Financial Studies, 31(7):2423–2467, 2018.

S. Altug, F. Collard, C. Cakmakli, S. Mukerji, and H. Ozsoylev. Ambiguous business cycles:

A quantitative assessment. Review of Economic Dynamics, 38:220–237, 2020.

K. Arrow, P. Dasgupta, L. Goulder, G. Daily, P. Ehrlich, G. Heal, S. Levin, K.-G. Mäler,
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Appendix
The Appendix consists of four parts. Appendix A provides the discussion on the aggre-

gator and the assumption of θ > 0. We present our solution method for φ(z) in Section A.

Section B provide all the proofs for the propositions and the corollaries in the main body of

the paper. Finally, the numerical scheme is explained in Section C.

A Discussion on the aggregator and the assumption

θ > 0

Herdegen et al. (2023a) provide a thorough discussion on the difference between the follow-

ing two types of aggregators18,

gEZ(t, c, V ) = be−ρt
c
1− 1

ψ

1− 1
ψ

((1− γ)V )

1
ψ

−γ
1−γ , (A.1)

g∆EZ(c, V ) = b
c
1− 1

ψ

1− 1
ψ

((1− γ)V )

1
ψ

−γ
1−γ − ρ

θ
V. (A.2)

As in Herdegen et al. (2023a), we refer to the aggregators in (A.1) and (A.2) as the discounted

form and difference form, respectively.

Although the difference form aggregator in (A.2) has been widely used in the litera-

ture, the discounted form aggregator in (A.1), which is a reformulation of the discounted

form in (A.1), has several advantages. Among them, the most important advantage of using

discounted form aggregator in (A.1) is that the existence of utility process V for a given

consumption process c is guaranteed for more wide class of consumption processes. More

specifically, if there exists a utility process V for a given consumption process c with differ-

ence form aggregator, same V is also the utility process with discounted form aggregator.

However, the converse may not be true.

It is shown in Herdegen et al. (2023a) that ϑ > 0 (θ > 0 in our model) is necessary for the

existence of utility process V for a given consumption process c. More detailed discussion

18γ, ψ, θ, and ρ in our model correspond to R,1/S,1/ϑ, and δ in Herdegen et al. (2023a)
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and analysis on the existence and uniqueness of utility process V for a given consumption

process c are provided in Herdegen et al. (2023b) (when 0 < ϑ < 1, which is θ > 1 in our

model) and Herdegen et al. (2021) (when ϑ > 1, which is 0 < θ < 1 in our model).

Based on these results by Herdegen et al. (2023a,b, 2021), we adopt the discounted form

aggregator in (2.2) by setting19

f(s, c, l, V ) = gEZ(s, c
ηl1−η, V )

and assume that θ > 0 to guarantee the existence and uniqueness of utility process V for

given consumption process c and the leisure process l. Since both c and l are nonnegative

progressively measurable processes, cηl1−η is also a nonnegative progressively measurable

process. Thus, the results by Herdegen et al. (2023a,b, 2021) on the existence and uniqueness

of utility process V can be applied to our model with discounted form aggregator in (2.2).

19Since b in (A.1) is just a scaling parameter for the utility process V , which is irrelevant to the preference and
the optimal decision of agent, we assume that b = 1 without loss of generality.
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Online Appendix for “Consumption and Labor-Leisure

Choices: YOLO and Long-Run Sustainability”
K.J Choi, M. Kwak, and B.H. Lim

A Solution Analysis for φ(z)

As we will see in the proof of Proposition A.1, by representing α1(z), β1(z), α2(z), and

β2(z) in terms of integrals of φ1(z) and φ2(z), we can derive the coupled integral equations

of φ1(z) and φ2(z) that include the free boundary z̄, and an algebraic equation for the free

boundary z̄ that includes the integrals of φ1(z) and φ2(z). However, since the equations

are complicated and highly interconnected, it is challenging to obtain the solutions directly.

Thus, we take an alternative way to obtain the solution by introducing another transform.

Let us define a new variable y = z/z̄, and define new functions F1(y) and F2(y) as

follows:

F1(y) =
(1− γ)(φ1(z)− zφ′

1(z))

z
1− 1

γ

, for y ≥ 1, (A.1)

F2(y) =
(1− γ)(φ2(z)− zφ′

2(z))

z
1− 1

γ2

, for 0 < y ≤ 1. (A.2)

Then, we represent α1(z), β1(z), α2(z), and β2(z) in terms of F1(y) and F2(y). Conse-

quently, we can derive the integral equations for F1(y) and F2(y). Although the integral

equations of F1(y) and F2(y) are still interconnected, they are much simpler than the in-

tegral equations of φ1(z) and φ2(z), and more importantly, they do not include the free

boundary z̄. Thus, we will solve F1(y) and F2(y) without determining the free boundary z̄

simultaneously. Once we obtain F1(1), the free boundary z̄ is explicitly determined. The

following proposition summarizes the above results and provides the solutions to ODEs (3.9)

and (3.10).
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Proposition A.1. Let us define M1, M2, ζ as

M1 ≜
(n+ − 1 + 1

γ )(1− n− − 1
γ )

(n+ − n−)(1− γ)
γA

1+(θ−1)ψ
1 , (A.3)

M2 ≜
(n+ − 1 + 1

γ2
)(1− n− − 1

γ2
)

(n+ − n−)(1− γ)
γ2

(
A2

η

)1+ θ−1
γ1

, (A.4)

ζ ≜ η

(
ηw

1− η

)−γ1
L
− 1
ψ . (A.5)

Then, the solutions to the nonlinear ODEs in (3.9) and (3.10) are given by (3.14) and (3.15),

respectively, with

α1(z) =M1z̄
−(n+−1+ 1

γ
)
∫ ∞

z/z̄
u
−n+− 1

γF1(u)
−(θ−1)ψdu−M1

A
−(θ−1)ψ
1

(n+ − 1 + 1
γ )
z
−(n+−1+ 1

γ
)
,

β1(z) =M1
(n+ − 1)

(1− n−)
z̄
1−n−− 1

γ

∫ ∞

1
u
−n+− 1

γF1(u)
−(θ−1)ψdu+M1z̄

1−n−− 1
γ

∫ z/z̄

1
u
−n−− 1

γF1(u)
−(θ−1)ψdu

+
ζ

1
θ−1

(1− n−)(1− γ)
z̄

1
1−θ−n− −M1

A
−(θ−1)ψ
1

(1− n− − 1
γ )
z
1−n−− 1

γ ,

α2(z) =M1z̄
−(n+−1+ 1

γ
)
∫ ∞

1
u
−n+− 1

γF1(u)
−(θ−1)ψ +M2z̄

−(n+−1+ 1
γ2

)
∫ 1

z/z̄
u
−n+− 1

γ2 F2(u)
− θ−1

γ1 du

+
(1− n−)wL

(n+ − n−)r
z̄−(n+−1) −M2

(
A2
η

)− θ−1
γ1

(n+ − 1 + 1
γ2
)
z
−(n+−1+ 1

γ2
)
,

β2(z) =M2z̄
1−n−− 1

γ2

∫ z/z̄

0
u
−n−− 1

γ2 F2(u)
− θ−1

γ1 −M2

(
A2
η

)− θ−1
γ1

(1− n− − 1
γ2
)
z
1−n−− 1

γ2 ,

and the free boundary z̄ is determined as

z̄ = F1(1)
−γψ(θ−1)ζψγ . (A.6)

The integral equations for F1(y), F2(y), and F1(1) are provided in the proof.

Before we provide the proof of the proposition, we have an important remark.

Remark 3. Since φ1(z) and φ2(z) do not appear in α1(z), β1(z), α2(z), and β2(z) in

Proposition A.1, one may think that we can define F1(y) and F2(y) directly from the value
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function V (x) without defining the functions φ1(z) and φ2(z). Note that, however, the new

variable y = z/z̄ for F1(y) and F2(y) is defined using z and z̄. Since the variable z is

defined implicitly using φ′(z) and z̄ is the free boundary for φ1(z) and φ2(z), we have to

define φ1(z), φ2(z), and the free boundary z̄ before introducing F1(y) and F2(y) with new

variable y = z/z̄.

Proof. We can show that

K =
1

2
κ2(n+ − 1 +

1

γ
)(1− n− − 1

γ
), (A.7)

K2 =
1

2
κ2(n+ − 1 +

1

γ2
)(1− n− − 1

γ2
). (A.8)

Using A1 in (3.13) and K in (A.7), we can show that M1 defined in (A.3) satisfies

ηψ

η(ψ − 1)

(
ηw

1− η

)1−γ1ψ
=

(n+ − n−)κ
2

2
M1. (A.9)

Similarly, using A2 in (3.13) and K2 in (A.8), we can derive that M2 in (A.4) satisfies

γ1
1− γ1

η
1
γ1L

1− 1
γ1ψ =

(n+ − n−)κ
2

2
M2. (A.10)

For z > z̄, if we substitute φ1(z) in (3.14) into the ODE (3.9) and using (A.9), we have the

following equation:

α′
1(z)n+z

n++1 + β′1(z)n−z
n−+1

(n+ − n−)
= −M1

[
((1− γ)(φ1(z)− zφ′

1(z))
−(θ−1)ψz1−ψ −A

−(θ−1)ψ
1 z

1− 1
γ

]
.

(A.11)

From (3.16), we have

α′
1(z)n+z

n++1 + β′1(z)n−z
n−+1 = α′

1(z)(n+ − n−)z
n++1 = −β′1(z)(n+ − n−)z

n−+1.

3



Thus, we have two different versions of (A.11) as follows:

α′
1(ξ) =−M1

[
((1− γ)(φ1(ξ)− ξφ′

1(ξ)))
−(θ−1)ψξ−n+−ψ −A

−(θ−1)ψ
1 ξ

−n+− 1
γ

]
,

(A.12)

β′1(ξ) =M1

[
((1− γ)(φ1(ξ)− ξφ′

1(ξ)))
−(θ−1)ψξ−n−−ψ −A

−(θ−1)ψ
1 ξ

−n−− 1
γ

]
, (A.13)

for ξ > z̄. For given z > z̄, by integrating (A.12) from z to ∞ and setting limz→∞ α1(z) = 0

due to the growth condition, we have

α1(z) =M1

[∫ ∞

z
((1− γ)(φ1(ξ)− ξφ′

1(ξ)))
−(θ−1)ψξ−n+−ψdξ −

∫ ∞

z
A

−(θ−1)ψ
1 ξ

−n+− 1
γ dξ

]
.

(A.14)

By integrating (A.13) from z̄ to z, we have

β1(z) =β1(z̄) +M1

[∫ z

z̄
((1− γ)(φ1(ξ)− ξφ′

1(ξ)))
−(θ−1)ψξ−n−−ψdξ −

∫ z

z̄
A

−(θ−1)ψ
1 ξ

−n−− 1
γ dξ

]
.

(A.15)

For 0 < z ≤ z̄, by substituting φ2(z) in (3.15) into the ODE (3.10) and using the

relationship (A.10), we have

α′
2(z)n+z

n++1 + β′2(z)n−z
n−+1

(n+ − n−)
= −M2

[
((1− γ)(φ2(z)− zφ′

2(z))
− θ−1

γ1 z
1− 1

γ1 −
(
A2

η

)− θ−1
γ1

z
1− 1

γ2

]
.

(A.16)

Again, from (3.16), we have

α′
2(z)n+z

n++1 + β′2(z)n−z
n−+1 = α′

2(z)(n+ − n−)z
n++1 = −β′2(z)(n+ − n−)z

n−+1.
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Therefore, we have two different versions of (A.16) as follows:

α′
2(ξ) =−M2

[
((1− γ)(φ2(ξ)− ξφ′

2(ξ))
− θ−1

γ1 ξ
−n+− 1

γ1 −
(
A2

η

)− θ−1
γ1

ξ
−n+− 1

γ2

]
,

(A.17)

β′2(ξ) =M2

[
((1− γ)(φ2(ξ)− ξφ′

2(ξ))
− θ−1

γ1 ξ
−n−− 1

γ1 −
(
A2

η

)− θ−1
γ1

ξ
−n−− 1

γ2

]
,

(A.18)

for 0 < ξ ≤ z̄. For given 0 < z ≤ z̄, by integrating (A.17) from z to z̄, we have

α2(z) =α2(z̄) +M2

[∫ z̄

z
((1− γ)(φ2(ξ)− ξφ′

2(ξ))
− θ−1

γ1 ξ
−n+− 1

γ1 dξ −
∫ z̄

z

(
A2

η

)− θ−1
γ1

ξ
−n+− 1

γ2 dξ

]
.

(A.19)

By integrating (A.18) from 0 to z and setting limz→0+ β2(z) = 0 because of the growth

condition, we get

β2(z) =M2

[∫ z

0
((1− γ)(φ2(ξ)− ξφ′

2(ξ))
− θ−1

γ1 ξ
−n−− 1

γ1 dξ −
∫ z

0

(
A2

η

)− θ−1
γ1

ξ
−n−− 1

γ2 dξ

]
.

(A.20)

Note that we have three unknown values: z̄, β1(z̄), and α2(z̄). These unknown values can be

determined by using the smooth-pasting conditions (3.11) at z = z̄, and setting l∗(x̄) = L

for l∗(x) given in (3.2). First, the smooth-pasting conditions (3.11) at z = z̄ lead to

α1(z̄)z̄
n+ + β1(z̄)z̄

n− + φp,1(z̄) = α2(z̄)z̄
n+ + β2(z̄)z̄

n− + φp,2(z̄),

α1(z̄)n+z̄
n+−1 + β1(z̄)n−z̄

n−−1 + φ′
p,1(z̄) = α2(z̄)n+z̄

n+−1 + β2(z̄)n−z̄
n−−1 + φ′

p,2(z̄),
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and combining above two equations, we can obtain

β1(z̄) = β2(z̄) +
z̄−n−

(n+ − n−)

[
−φp,1(z̄)n+ + z̄φ′

p,1(z̄) + φp,2(z̄)n+ − z̄φ′
p,2(z̄)

]
,

(A.21)

α2(z̄) = α1(z̄) +
z̄−n+

(n+ − n−)

[
−φp,1(z̄)n− + z̄φ′

p,1(z̄) + φp,2(z̄)n− − z̄φ′
p,2(z̄)

]
.

(A.22)

Although we obtain expressions for β1(z̄) and α2(βz), we still need one more equation to

determine z̄. We can show that l∗(x̄) = L is equivalent to

(1− γ)(φ1(z̄)− z̄φ′
1(z̄)) = ζ

1
θ−1 z̄

1
1−θ , (A.23)

where ζ is given in (A.5). From (A.23), we can derive another expression of β1(z̄) as follows:

β1(z̄) =
(n+ − 1)

(1− n−)
α1(z̄)z̄

n+−n− −
(φp,1(z̄)− z̄φ′

p,1(z̄))

(1− n−)(1− γ)
+

ζ
1
θ−1 z̄

1
1−θ

(1− n−)(1− γ)
. (A.24)

Combining (A.21) and (A.24), we can obtain another equation as follows that determines z̄:

β2(z̄) +
z̄−n−

(n+ − n−)

[
−φp,1(z̄)n+ + z̄φ′

p,1(z̄) + φp,2(z̄)n+ − z̄φ′
p,2(z̄)

]
=

(n+ − 1)

(1− n−)
α1(z̄)z̄

n+−n− −
(φp,1(z̄)− z̄φ′

p,1(z̄))

(1− n−)(1− γ)
+

ζ
1
θ−1 z̄

1
1−θ

(1− n−)(1− γ)
. (A.25)

In summary, we have coupled integral equations for the functions φ1(z) and φ2(z) as follows

φ1(z) = α1(z)z
n+ + β1z

n− + φp,1(z), φ2(z) = α2(z)z
n+ + β2z

n− + φp,2(z),

with α1(z), β1(z), α2(z), and β2(z) in (A.14), (A.15), (A.19), and (A.20), respectively, and

z̄ is determined implicitly by (A.25).

Even though we have obtained the integral equations for φ1(z), φ2(z), and z̄ by deriving

the integral representations for α1(z), β1(z), α2(z), and β2(z) as in (A.14), (A.15), (A.19),

and (A.20), respectively, it is very complicated and interconnected each other. To resolve

this, we introduce a new variable y = z/z̄ and new functions F1(y) and F2(y) defined in
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(A.1) and (A.2).

We can show that

((1− γ)(φ1(ξ)− ξφ′
1(ξ)))

−(θ−1)ψξ−n±−ψ = ξ
−n±− 1

γF1(ξ/z̄)
−(θ−1)ψ,

((1− γ)(φ2(ξ)− ξφ′
2(ξ))

− θ−1
γ1 ξ

−n±− 1
γ1 = ξ

−n±− 1
γ2 F2(ξ/z̄)

− θ−1
γ1 .

By applying above relationship to the equations (A.14), (A.15), (A.19), (A.20), (A.21),

(A.22), (A.25), and changing the variable of integrals from ξ to u = ξ/z̄, we can obtain

the expressions for α1(z), β1(z), α2(z), β2(z) in Proposition A.1, and the integral equations

for F1(y), F2(y), and F1(1) as follows:

F1(y) = F1(1)y
−(1−n−− 1

γ
) (A.26)

− (n+ − 1)M1(1− γ)y
n+−1+ 1

γ

∫ ∞

y
u
−n+− 1

γF1(u)
−(θ−1)ψdu

+ (n+ − 1)M1(1− γ)y
−(1−n−− 1

γ
)
∫ ∞

1
u
−n+− 1

γF1(u)
−(θ−1)ψdu

+ (1− n−)M1(1− γ)y
−(1−n−− 1

γ
)
∫ y

1
u
−n−− 1

γF1(u)
−(θ−1)ψdu, for y ≥ 1,

F2(y) = F2(1)y
n+−1+ 1

γ2 (A.27)

− (1− n−)M2(1− γ)y
n+−1+ 1

γ2

∫ 1

0
u
−n−− 1

γ2 F2(u)
− θ−1

γ1 du

− (n+ − 1)M2(1− γ)y
n+−1+ 1

γ2

∫ 1

y
u
−n+− 1

γ2 F2(u)
− θ−1

γ1 du

+ (1− n−)M2(1− γ)y
−(1−n−− 1

γ2
)
∫ y

0
u
−n−− 1

γ2 F2(u)
− θ−1

γ1 du, for 0 < y ≤ 1,

F1(1) =− (n+ − 1)M1(1− γ)

∫ ∞

1
u
−n+− 1

γF1(u)
−(θ−1)ψdu

+(1− n−)M2(1− γ)F1(1)
− (γ2−γ)ψ(θ−1)

γ2 ζ
(γ2−γ)ψ

γ2

∫ 1

0
u
−n−− 1

γ2 F2(u)
− θ−1

γ1 du

−(1− γ)(n+ − 1)(1− n−)

(n+ − n−)

wL

r
F1(1)

−ψ(θ−1)ζψ, (A.28)

with the free boundary z̄ determined as (A.6). By the definition of F1(y) and F2(y) and the
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expression of z̄ in (A.6), it is immediate that

F2(1) = F1(1)z̄
1
γ2

− 1
γ = F1(1)

ηγ−ηψγ+ψγ
γ2 ζ

ψγ( 1
γ2

− 1
γ
)
. (A.29)

B Proofs

B.1 Proof of Proposition 1

By applying (3.7) and (3.8) to (3.2), (3.3), and (3.5), we can obtain the following candidates

for the optimal strategies:

c∗(x) =


ηw
1−η l

∗(x), x ≤ x̄,[
Lψ

−1−γ1
η {(1− γ)(φ2(z)− zφ′

2(z))}
θ−1 z

]− 1
γ1 , x ≥ x̄,

(B.1)

l∗(x) =

 ηψ
(
ηw
1−η

)−γ1ψ
{(1− γ)(φ1(z)− zφ′

1(z))}
−(θ−1)ψ z−ψ, x ≤ x̄,

L, x ≥ x̄,
(B.2)

π∗(x) =

 κ
σS
zφ′′

1(z), x ≤ x̄,

κ
σS
zφ′′

2(z), x ≥ x̄,
(B.3)

where x = −φ1(z) for x ≤ x̄ and x = −φ2(z) for x ≥ x̄. We can obtain the formulas in

Proposition 1 by using F1(y), F2(y) defined in (A.1) and (A.2) along with z̄ in (A.6) and

F2(1) in (A.29).

B.2 Proof of Proposition 2

Assume that (5.2) holds. By substituting the optimal consumption, leisure, and investments

in Corollary 1 into D(x) in (5.1), we have

D(x) =


(
r + κ2

γ −Kθ=1
)
Aθ=1

1 Zθ=1
1 (x)

− 1
γ +

{
−r + κ2(n− − 1)

}
n−β

θ=1
1 Zθ=1

1 (x)n−−1, x ≤ x̄θ=1,(
r + κ2

γ2
−Kθ=1

2

)
Aθ=1

2 Zθ=1
2 (x)

− 1
γ2 +

{
−r + κ2(n+ − 1)

}
n+α

θ=1
2 Zθ=1

2 (x)n+−1, x ≥ x̄θ=1.
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Since n− < 0, it is obvious that −r + κ2(n− − 1) < 0. We also know from (3.20) that

βθ=1
1 < 0, and it follows that the second term of D(x) for x ≤ x̄θ=1 is negative. Recall that

Kθ=1 = −q
(
1− 1

γ

)
= r +

1

γ
(ρ− r) +

γ − 1

2γ2
κ2, and this leads to

r +
κ2

γ
−Kθ=1 = −1

γ

(
ρ− r − γ + 1

2γ
κ2

)
< 0

when (5.2) holds. Since Aθ=1
1 > 0, the first term of D(x) for x ≤ x̄θ=1 is also negative from

(5.2) and thus D(x) < 0 for x ≤ x̄θ=1.

For x ≥ x̄θ=1,

r +
κ2

γ2
−Kθ=1

2 = − 1

γ2

(
ρ− r − γ2 + 1

2γ2
κ2

)
< 0

when (5.2) holds because Kθ=1
2 = −q

(
1− 1

γ2

)
= r +

1

γ2
(ρ− r) +

γ2 − 1

2γ22
κ2. Since

Aθ=1
2 > 0, the first term of D(x) for x ≥ x̄θ=1 is negative.

Regarding the sign of the second term of D(x) for x ≥ x̄θ=1, note that n+ > 1 and

αθ=1
2 > 0. However, the sign of −r + κ2(n+ − 1) is unclear. If −r + κ2(n+ − 1) < 0, the

second term of D(x) for x ≥ x̄θ=1 is also negative and thus D(x) < 0 for x ≥ x̄θ=1. If

−r + κ2(n+ − 1) ≥ 0, let us consider D′(x) for x > x̄θ=1, which is given as

D′(x) =

[
− 1

γ2

(
r +

κ2

γ2
−Kθ=1

2

)
Aθ=1

2 Zθ=1
2 (x)

− 1
γ2

−1

+
{
−r + κ2(n+ − 1)

}
n+α

θ=1
2 (n+ − 1)Zθ=1

2 (x)n+−2

]
dZθ=1

2 (x)

dx
, (B.4)

for x > x̄θ=1. Since dZθ=1
2 (x)
dx < 0, we can deduce from (B.4) that D′(x) < 0 for x > x̄θ=1

if −r + κ2(n+ − 1) ≥ 0. Since we have shown that D(x) < 0 for x ≤ x̄θ=1, it is clear that

D(x̄θ=1) < 0. Combining D(x̄θ=1) < 0 and D′(x) < 0 for x > x̄θ=1, we have D(x) < 0

for x ≥ x̄θ=1 even if −r + κ2(n+ − 1) ≥ 0, and we can conclude that D(x) < 0 for

x ≥ x̄θ=1 regardless of the sign of −r + κ2(n+ − 1).

In summary, we have shown thatD(x) < 0 for all xwhen (5.2) holds, and this completes

the proof.
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C Numerical Scheme

The numerical scheme presented in this section is the cornerstone of the analysis when in-

vestigating the implications studied in Section 4.

To set up some boundary values in the numerical scheme, we need the following lemma.

Lemma 1. The following results hold:

lim
z→∞

z−1φ1(z) =
wL̄

r
, lim

z→∞
φ′
1(z) =

wL̄

r
, lim

z→∞
zφ′′

1(z) = 0,

lim
z→0+

z
1
γ2

−1
φ2(z) =

γ2
1− γ2

A2, lim
z→0+

z
1
γ2 φ′

2(z) = −A2, lim
z→0+

z
1
γ2

+1
φ′′
2(z) =

1

γ2
A2.

Proof. Proof. Using L’Hôpital’s rule, we can show that

F1(∞) ≜ lim
y→∞

F1(y) = A1, F2(0+) ≜ lim
y→0+

F2(y) =
A2

η
. (C.1)

By computing the derivatives of φi(z) and applying (C.1), we can obtain the limits.

As mentioned in Section 3, we solve the integral equations for F1(y), F2(y), and F1(1)

instead of solving the integral equations for φ1(z), φ2(z), and z̄. This approach has advan-

tages thanks to the following two reasons. First, the domains of F1(y) and F2(y) are fixed

intervals [1,∞) and (0, 1], respectively, without a free boundary, whereas the domains of

φ1(z) and φ2(z) include the free boundary z̄, an unknown that should be determined simul-

taneously when solving the equations for φ1(z) and φ2(z). In fact, in our approach, the role

of z̄ as an unknown variable is replaced by F1(1), which is a function value at a fixed point.

Thus, we can obtain the numerical solutions to the functions F1(y) and F2(y) without con-

sidering the free boundary z̄. After we get F1(1), the free boundary z̄ is determined explicitly

as (A.6). The other advantage is that the integral equations for F1(y), F2(y), and F1(1) do

not include derivatives of F1(y) and F2(y) (see (A.26), (A.27), and (A.28)). In contrast, to

solve the integral equations for φ1(z), φ2(z), and z̄, we need to compute the derivatives of

the unknown functions φ1(z) and φ2(z) because φi(·) always appears in αi(z) and βi(z) as

φi(z)− zφ′
i(z) for i = 1, 2.

Overall, it is much easier to develop a numerical scheme to solve the integral equations

for F1(y), F2(y), and F1(1) in fixed domains without a free boundary that do not require the
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computation of derivatives of the unknown functions.

Note that the domain of F2(y) is (0, 1]. We discretize the domain of F2(y) using y(N)
2,k ≜

k

N
for k = 0, 1, . . . , N , and consider the following simple function F (N)

2 (y):

F
(N)
2 (y) = F

(N)
2,0 1{0<y≤ 1

2N
} +

N−1∑
k=1

F
(N)
2,k 1{y(N)

2,k − 1
2N

<y≤y(N)
2,k + 1

2N
} + F

(N)
2,N 1{1− 1

2N
<y≤1},

(C.2)

F
(N)
2,0 and F (N)

2,N correspond to F2(0+) and F2(1), respectively, and we set

F
(N)
2,0 =

A2

η
(C.3)

by (C.1). Similarly, we introduce a simple function F (M)
1 (y) that approximates F1(y). How-

ever, since the domain of F1(y) is [0,∞), which is unbounded, additional treatment is nec-

essary. Note that F1(∞) = A1 in (C.1). Thus, we set F (M)
1 (y) = A1 for y ≥ ymax for some

large enough ymax and discretize the interval [1, ymax] into M sub-intervals. To do so, let

us define ∆y
(M)
1 ≜ ymax−1

M , y
(M)
1,j ≜ 1 + j∆y

(M)
1 for j = 0, 1, . . . ,M . Then, the simple

function F (M)
1 (y) is defined as follows:

F
(M)
1 (y) = F

(M)
1,0 1{1≤y≤1+ 1

2
∆y

(M)
1 } +

M−1∑
j=1

F
(M)
1,j 1{y(M)

1,j − 1
2
∆y

(M)
1 <y≤y(M)

1,j + 1
2
∆y

(M)
1 } + F

(M)
1,M 1{ymax− 1

2
∆y

(M)
1 <y}.

(C.4)

Here, F (M)
1,0 corresponds to F1(1) satisfying (A.28), and we set

F
(M)
1,M = A1. (C.5)

If we replace F2(·) in (A.27) by the simple function F (N)
2 (·) in (C.2) that approximates F2(·)
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and set y = y
(N)
2,k for k = 1, . . . , N − 1, we can derive the following matrix equation:


F

(N)
2,1

F
(N)
2,2

...

F
(N)
2,N−1

 = M2



F
(N)
2,1

− θ−1
γ1

F
(N)
2,2

− θ−1
γ1

...

F
(N)
2,N−1

− θ−1
γ1


+ b2(F

(N)
2,0 , F

(N)
2,N ) (C.6)

for an (N − 1)× (N − 1) matrix M2 and an (N − 1)× 1 vector b2 that depends on F (N)
2,0

and F (N)
2,N . Similarly, replacing F1(·) in (A.26) by the simple function F (M)

1 (·) in (C.4) and

setting y = y
(M)
1,j for j = 1, . . . ,M − 1, we have a matrix equation as follows:


F

(M)
1,1

F
(M)
1,2

...

F
(M)
1,M−1

 = M1


F

(M)
1,1

−(θ−1)ψ

F
(M)
1,2

−(θ−1)ψ

...

F
(M)
1,M−1

−(θ−1)ψ

+ b1(F
(M)
1,0 , F

(M)
1,M ) (C.7)

for an (M − 1)× (M − 1) matrix M1 and an (M − 1)× 1 vector b1 that depends on F (M)
1,0

and F (M)
1,M . By replacing F1(·) and F2(·) on the right-hand side of (A.28) by F (M)

1 (·) in (C.4)

and F (N)
2 (·) in (C.2), respectively, we can represent F (M)

1,0 as follows:

F
(M)
1,0 = R1


F

(M)
1,0

−(θ−1)ψ

F
(M)
1,1

−(θ−1)ψ

...

F
(M)
1,M

−(θ−1)ψ

+ F
(M)
1,0

− (γ2−γ)(θ−1)ψ
γ2 R2



F
(N)
2,0

− θ−1
γ1

F
(N)
2,1

− θ−1
γ1

...

F
(N)
2,N

− θ−1
γ1


(C.8)

for a 1× (M + 1) vector R1 and a 1× (N + 1) vector R2. From (A.29), we have

F
(N)
2,N = F

(M)
1,0

ηγ−ηψγ+ψγ
γ2 ζ

ψγ( 1
γ2

− 1
γ
)
. (C.9)

Using an iterative method for large enough M and N , we obtain F (M)
1 (y) and F (N)

2 (y)

that approximate F1(y) and F2(y) with F (M)
1,0 , F

(M)
1,1 , · · · , F (M)

1,M and F (N)
2,0 , F

(N)
2,1 , · · · , F

(N)
2,N

12



satisfying (C.3), (C.5), (C.6), (C.7), (C.8), and (C.9) simultaneously.20 Once we get F (M)
1 (y)

and F (N)
2 (y), we can compute z̄, α1(z), β1(z), α2(z), and β2(z) in Proposition A.1 using

F
(M)
1 (y) and F (N)

2 (y) instead of F1(y) and F2(y), and the optimal strategies in Proposition

1 can be attained numerically.

20Since the entries of M1, M2, R1, R2, b1, and b2 are very complicated, they are omitted from the paper. They
can be provided upon request.
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